receptors such as V1R or V2R, might be the proteins activated by desmopressin in treatment of primary nocturnal enuresis. This central effect of desmopressin is also supported by the fact that use of tricyclic antidepressants and the bell pad are as effective as desmopressin in treatment of primary nocturnal enuresis.

Our clinical and experimental data show that a major action of desmopressin to resolve primary nocturnal enuresis might reside outside the kidney and we suggest the central nervous system as the alternative site. Such action would account not only for the pathophysiological but also for the pharmacological basis of desmopressin treatment.

Contributors
The first two authors contributed equally to the study. D Müller made the clinical diagnosis of the affected families and wrote the report. N Marr did the functional investigations on the mutant AQP2 proteins. T Ankermann and P Eggert participated in the clinical and biochemical investigations of the patients. P Deen set up the techniques to investigate AQP2 function, supervised the cell biology, and wrote the report.

Conflict of interest statement
None declared.

Acknowledgments
This study was supported by grants from the European Community Training and Mobility in Research (FMRX-CT97-0128) and Biotech (BF04-CT98-0024) to P Deen. P Deen is an investigator of the Royal Netherlands Academy of Arts and Sciences. D Müller is supported by the Deutsche Forschungsgemeinschaft (MU 1497 2-1). We thank Christoph Aufricht, AKH, Vienna, Austria for critical reading of this report. The study sponsors had no role in study design; data collection, analysis, or interpretation; or in the writing of the report.

University Children’s Hospital, Kiel, Germany (D Müller mo, T Ankermann mo, P Eggert mo); Department of Cell Physiology, University Medical Centre, St Radboud, 6500 HB Nijmegen, Netherlands (N Marr PhD, P M T Deen PhD)

Correspondence to: Dr D Müller (e-mail: d.mueller@celfys.kun.nl)

Merkel cell carcinoma and HIV infection
Eric A Engels, Morten Frisch, James J Goedert, Robert J Biggar, Robert W Miller

Merkel cell carcinoma (MCC) is a rare skin cancer that occurs more frequently after organ transplantation or B-cell malignancy, conditions of suppressed or disordered immunity. To assess further whether immune suppression increases MCC risk, we studied its occurrence in a cohort of 309 365 individuals with acquired immunodeficiency syndrome (AIDS) by using linked AIDS and cancer registries. We identified six cases of MCC, corresponding to a relative risk of 13·4 (95% CI 4·9–29·1) compared with the general population. These results suggest that immune suppression induced by the human immunodeficiency virus increases MCC risk.

Merkel cell carcinoma (MCC) is a rare skin cancer thought to be of neural crest derivation. In the USA, MCC occurs predominantly among elderly men (85% of cases arise after age 60 years). The cancer is especially uncommon in black people and, as with other skin cancers, exposure to ultraviolet sunlight may be a risk factor.1 Suppression or dysregulation of the immune system might also have a role. MCC occurs more commonly in organ transplant recipients than in the general population. In the Cincinnati Transplant Tumor Registry, Penn and First2 found 41 cases of MCC, comprising 0·9% of incident skin cancers. MCC also arises in excess in individuals with B-cell lymphoid neoplasms.1 These observations prompted us to look for an excess of MCC in individuals with human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS).

We linked data from population-based AIDS and cancer registries in 11 geographical locations in the USA for the period 1978–96.3 We used the cancer registries to find and classify malignancies in individuals who had been identified in corresponding AIDS registries. The cohort consisted of 309 365 individuals with AIDS (mean age 37 years; 83% male; 43% white, 36% black, 20% Hispanic). We counted
MCC cases occurring in the period from −60 months to +27 months relative to AIDS onset. We then calculated the relative risk (RR) in patients with AIDS compared with the general population, as the ratio of observed to expected MCC cases with HIV risk factor information, five (63%) of patients were men who had sex with men. We found additional MCC cases in an individual, since in our cohort, (52%) of patients were men (four white, two Hispanics). Ages at MCC diagnosis ranged from 40 to 59 years, and individuals with MCC were older at the onset of AIDS than other cohort patients (mean age 48 vs 37 years; p=0·01). Excluding black people and individuals younger than 40 years old (groups with low MCC risk) did not materially change the effect of HIV/AIDS (RR 17·4 [95% CI 6·4–37·8]; p<0·0001; table). All were men (four white, two Hispanics). Ages at MCC diagnosis ranged from 40 to 59 years, and individuals with MCC were older at the onset of AIDS than other cohort patients (mean age 48 vs 37 years; p=0·01). Excluding black people and individuals younger than 40 years old (groups with low MCC risk) did not materially change the effect of HIV/AIDS (RR 17·4 [95% CI 6·4–37·8]).

Our data add evidence that weakened immunity increases MCC risk.1,2 With only six cases, we could not examine quantitatively whether MCC risk increased over time relative to AIDS onset or with depletion of CD4 lymphocytes, which could have provided additional evidence regarding the effect of immunosuppression.3 Nonetheless, it is striking that three of our cases occurred more than 6 months before AIDS onset. Four other MCC cases, previously reported in HIV-infected individuals, also occurred before clinical AIDS (table). Thus, risk seems to be increased even with moderate immunosuppression. MCC could also occur excessively in the late stage of AIDS and be overlooked in the presence of other illnesses competing for medical attention.

Alternatively, other common exposures could increase MCC risk in AIDS. We did not have data on ultraviolet light exposure, which is posited as a risk factor for MCC.4 Of eight MCC cases with HIV risk factor information, five (63%) occurred in homosexual or bisexual men (table), which reflects the distribution of HIV risk factors among infected individuals, since in our cohort, (52%) of patients were men who had sex with men. We found additional MCC cases in an intravenous drug user and a heterosexual male (RR 19·0 [95% CI 2·3–68·5]), which argues against a risk factor for MCC limited to homosexual and bisexual men.

We could not review microscopic slides for our cases. Nonetheless, given the rarity of MCC, it seems improbable that clinicians would have diagnosed MCC without pathological confirmation. Indeed, two of our cases were identified through the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) programme, which documents microscopic confirmation for more than 99% of MCC cases.5 Theoretically, the number of MCC cases in our study might have been inflated if individuals under care for HIV/AIDS received frequent skin examinations for Kaposi’s sarcoma, the most common skin tumour in AIDS. However, MCC is easily distinguished microscopically from Kaposi’s sarcoma, and previous case reports (table) described pathological findings consistent with MCC. Furthermore, MCC behaves aggressively and frequently metastasises,6 so screening would not have materially accelerated MCC diagnoses.

Notably, MCC cases arose in HIV-infected individuals who were much younger than typical for MCC, largely because most of our cohort patients were young adults (only 3% were age 60 years or older). With a low rate of new HIV infections in more-developed countries and the ageing of now-infected individuals, the age distribution of people with HIV will shift. Especially with current highly active antiretroviral therapies that delay AIDS onset but do not fully restore immunity, the incidence of MCC in HIV-infected individuals may rise with the increasing age of this population.

Contributors

All authors contributed to the design, analysis, and writing of the study. E A Engels led the analysis and writing of the paper.

Conflict of interest statement

None declared.

Acknowledgments

We thank contributors to the AIDS-Cancer Match Registry Study at each AIDS and cancer registry. The study used data from AIDS registries established by the Centers for Disease Control and Prevention and from state and local cancer registries, some supported by the National Cancer Institute’s Surveillance, Epidemiology, and End Results Program. We thank Tim McNeel (Information Management Systems) for expert computer assistance.

Viral Epidemiology Branch (E A Engels md, M Frisch md, J J Goedert md, R J Biggar md) and **Clinical Genetics Branch** (R W Miller md), **Division of Cancer Epidemiology and Genetics**, National Cancer Institute, Rockville, MD, USA; and **Department of Epidemiology Research, Danish Epidemiology Science Center, Statens Serum Institut, Copenhagen, Denmark** (M Frisch)

Correspondence to: Dr Eric A Engels (e-mail: engels@exchange.nih.gov)